What you think about an IC Engine.....???
IC engine
The internal combustion engine is an engine in which the combustion of a fuel (normally a fossil fuel) occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion apply direct force to some component of the engine. This force is applied typically to pistons, turbine blades, or a nozzle. This force moves the component over a distance, transforming chemical energy into useful mechanical energy. The first commercially successful internal combustion engine was created by Étienne Lenoir.
The term internal combustion engine usually refers to an engine in which combustion is intermittent, such as the more familiar four-stroke and two-stroke piston engines, along with variants, such as the six-stroke piston engine and the Wankel rotary engine. A second class of internal combustion engines use continuous combustion: gas turbines, jet engines and most rocket engines, each of which are internal combustion engines on the same principle as previously described.
The internal combustion engine (or ICE) is quite different from external combustion engines, such as steam or Stirling engines, in which the energy is delivered to a working fluid not consisting of, mixed with, or contaminated by combustion products. Working fluids can be air, hot water, pressurized water or even liquid sodium, heated in some kind of boiler.
A large number of different designs for ICEs have been developed and built, with a variety of different strengths and weaknesses. Powered by an energy-dense fuel (which is very frequently gasoline, a liquid derived from fossil fuels). While there have been and still are many stationary applications, the real strength of internal combustion engines is in mobile applications and they dominate as a power supply for cars, aircraft, and boats.
The internal combustion engine is an engine in which the combustion of a fuel (normally a fossil fuel) occurs with an oxidizer (usually air) in a combustion chamber. In an internal combustion engine the expansion of the high-temperature and -pressure gases produced by combustion applies direct force to some component of the engine, such as pistons, turbine blades, or a nozzle. This force moves the component over a distance, generating useful mechanical energy.
The term internal combustion engine usually refers to an engine in which combustion is intermittent, such as the more familiar four-stroke and two-stroke piston engines, along with variants, such as the Wankel rotary engine. A second class of internal combustion engines use continuous combustion: gas turbines, jet engines and most rocket engines, each of which are internal combustion engines on the same principle as previously described.
As their name implies, four-stroke internal combustion engines have four basic steps that repeat with every two revolutions of the engine:
(1) Intake stroke (2) Compression stroke (3) Power stroke and (4) Exhaust stroke
1. Intake stroke: The first stroke of the internal combustion engine is also known as the suction stroke because the piston moves to the maximum volume position (downward direction in the cylinder). The inlet valve opens as a result of the cam lobe pressing down on the valve stem, and the vaporized fuel mixture enters the combustion chamber. The inlet valve closes at the end of this stroke.
2. Compression stroke: In this stroke, both valves are closed and the piston starts its movement to the minimum volume position (upward direction in the cylinder) and compresses the fuel mixture. During the compression process, pressure, temperature and the density of the fuel mixture increases.
3. A Power stroke: When the piston reaches a point just before top dead center, the spark plug ignites the fuel mixture. The point at which the fuel ignites varies by engine; typically it is about 10 degrees before top dead center. This expansion of gases caused by ignition of the fuel produces the power that is transmitted to the crank shaft mechanism.
4. Exhaust stroke: In the end of the power stroke, the exhaust valve opens. During this stroke, the piston starts its movement in the maximum volume position. The open exhaust valve allows the exhaust gases to escape the cylinder. At the end of this stroke, the exhaust valve closes, the inlet valve opens, and the sequence repeats in the next cycle. Four-stroke engines require two revolutions.
Many engines overlap these steps in time; turbine engines do all steps simultaneously at different parts of the engines.
Efficiency of the IC engine:
IC engines lose 42% of their energy to exhaust and 28% of their energy to the cooling system. Therefore the true explanation for the poor performance of the engine would seem to lie in inefficient use of energy and loss of energy through heat transfer. The loss incurred through inefficient use of energy is easily understood , compressed fuel and air is ignited and is then used to propel the piston down the cylinder with explosive force for a distance of just a few inches after which all further energy developed by the fuel is lost and in fact becomes a liability since the piston has to reverse direction , a process which is inhibited by the pressure of trapped gases on the piston head. The reason that energy loss to heat transfer has been tolerated , and even welcomed by engineers , is a little more involved and will be referred to later on in the article. Notwithstanding the improvements made to the RI engine we have to ask ourselves , and this is the million dollar question , is this really the limit of performance of the reciprocating internal combustion engine, does this mark the end of the road for this more than 200 year old concept , some entrepreneurs seem to think not , they have come up with the idea of a concept IC engine.
Application
- Internal combustion engines are most commonly used for mobile propulsion in vehicles and portable machinery. In mobile equipment, internal combustion is advantageous since it can provide high power-to-weight ratios together with excellent fuel energy density. Generally using fossil fuel (mainly petroleum), these engines have appeared in transport in almost all vehicles (automobiles, trucks, motorcycles, boats, and in a wide variety of aircraft and locomotives).
- Where very high power-to-weight ratios are required, internal combustion engines appear in the form of gas turbines. These applications include jet aircraft, helicopters, large ships and electric generators.
Four-stroke cycle.
Idealised Pressure/volume diagram of the Otto cycle showing combustion heat input Qp and waste exhaust output Qo, the power stroke is the top curved line, the bottom is the compression stroke
Engines based on the four-stroke ("Otto cycle") have one power stroke for every four strokes (up-down-up-down) and employ spark plug ignition. Combustion occurs rapidly, and during combustion the volume varies little ("constant volume").[8] They are used in cars, larger boats, some motorcycles, and many light aircraft. They are generally quieter, more efficient, and larger than their two-stroke counterparts.
The steps involved here are:
Intake stroke: Air and vaporized fuel are drawn in.
Compression stroke: Fuel vapor and air are compressed and ignited.
Combustion stroke: Fuel combusts and piston is pushed downwards.
Exhaust stroke: Exhaust is driven out. During the 1st, 2nd, and 4th stroke the piston is relying on power and the momentum generated by the other pistons. In that case, a four-cylinder engine would be less powerful than a six- or eight-cylinder engine.
There are a number of variations of these cycles, most notably the Atkinson and Miller cycles. The diesel cycle is somewhat different.
Split-cycle engines separate the four strokes of intake, compression, combustion and exhaust into two separate but paired cylinders. The first cylinder is used for intake and compression. The compressed air is then transferred through a crossover passage from the compression cylinder into the second cylinder, where combustion and exhaust occur. A split-cycle engine is really an air compressor on one side with a combustion chamber on the other.
Previous split-cycle engines have had two major problems - poor breathing (volumetric efficiency) and low thermal efficiency. However, new designs are being introduced that seek to address these problems.
The Scuderi Engine addresses the breathing problem by reducing the clearance between the piston and the cylinder head through various turbo charging techniques. The Scuderi design requires the use of outwardly opening valves that enable the piston to move very close to the cylinder head without the interference of the valves. Scuderi addresses the low thermal efficiency via firing ATDC.
Firing ATDC can be accomplished by using high-pressure air in the transfer passage to create sonic flow and high turbulence in the power cylinder.
[edit]Diesel cycle
Main article: Diesel cycle
P-v Diagram for the Ideal Diesel cycle. The cycle follows the numbers 1-4 in clockwise direction.
Most truck and automotive diesel engines use a cycle reminiscent of a four-stroke cycle, but with a compression heating ignition system, rather than needing a separate ignition system. This variation is called the diesel cycle. In the diesel cycle, diesel fuel is injected directly into the cylinder so that combustion occurs at constant pressure, as the piston moves.
Otto cycle: Otto cycle is the typical cycle for most of the cars internal combustion engines, that work using gasoline as a fuel. Otto cycle is exactly the same one that was described for the four-stroke engine. It consists of the same four major steps: Intake, compression, ignition and exhaust.
PV diagram for Otto cycle On the PV-diagram, 1-2: Intake: suction stroke 2-3: Isentropic Compression stroke 3-4: Heat addition stroke 4-5: Exhaust stroke (Isentropic expansion) 5-2: Heat rejection The distance between points 1-2 is the stroke of the engine. By dividing V2/V1, we get: r
where r is called the compression ratio of the engine.
Two-stroke cycle
Main article: Two-stroke cycle
This system manages to pack one power stroke into every two strokes of the piston (up-down). This is achieved by exhausting and recharging the cylinder simultaneously.
The steps involved here are:
Intake and exhaust occur at bottom dead center. Some form of pressure is needed, either crankcase compression or super-charging.
Compression stroke: Fuel-air mix is compressed and ignited. In case of diesel: Air is compressed, fuel is injected and self-ignited.
Power stroke: Piston is pushed downward by the hot exhaust gases.
Two Stroke Spark Ignition (SI) engine:
In a two-stroke SI engine a cycle is completed in two strokes of a piston or one complete revolution (360°) of a crankshaft. In this engine the intake and exhaust strokes are eliminated and ports are used instead of valves. In this cycle, the gasoline is mixed with lubricant oil, resulting in a simpler, but more environmentally damaging system, as the excess oils do not burn and are left as a residue. As the piston proceeds downward another port is opened, the fuel/air intake port. Air/fuel/oil mixtures come from the carburetor, where it was mixed, to rest in an adjacent fuel chamber. When the piston moves further down and the cylinder doesn't have anymore gases, fuel mixture starts to flow to the combustion chamber and the second process of fuel compression starts. The design carefully considers the point that the fuel-air mixture should not mix with the exhaust, therefore the processes of fuel injection and exhausting are synchronized to avoid that concern. It should be noted that the piston has three functions in its operation:
The piston acts as the combustion chamber with the cylinder and compresses the air/fuel mixture, receives back the liberated energy, and transfers it to the crankshaft.
The piston motion creates a vacuum that sucks the fuel/air mixture from the carburetor and pushes it from the crankcase (adjacent chamber) to the combustion chamber.
The sides of the piston act like the valves, covering and uncovering the intake and exhaust ports drilled into the side of the cylinder wall.
The major components of a two-stroke spark ignition engine are the:
Cylinder: A cylindrical vessel in which a piston makes an up and down motion.
Piston: A cylindrical component making an up and down movement in the cylinder
Combustion chamber: A portion above the cylinder in which the combustion of the fuel-air mixture takes place
Intake and exhaust ports: Ports that carry fresh fuel-air mixture into the combustion chamber and products of combustion away
Crankshaft: A shaft that converts reciprocating motion of the piston into rotary motion
Connecting rod: A rod that connects the piston to the crankshaft
Spark plug: An ignition-source in the cylinder head that initiates the combustion process
Operation: When the piston moves from bottom dead center (BDC) to top dead center (TDC) the fresh air and fuel mixture enters the crank chamber through the intake port. The mixture enters due to the pressure difference between the crank chamber and the outer atmosphere while simultaneously the fuel-air mixture above the piston is compressed.
Ignition: With the help of a spark plug, ignition takes place at the top of the stroke. Due to the expansion of the gases the piston moves downwards covering the intake port and compressing the fuel-air mixture inside the crank chamber. When the piston is at bottom dead center, the burnt gases escape from the exhaust port.
At the time the transfer port is uncovered the compressed charge from the crank chamber enters into the combustion chamber through the transfer port. The fresh charge is deflected upwards by a hump provided on the top of the piston and removes the exhaust gases from the combustion chamber. Again the piston moves from bottom dead center to top dead center and the fuel-air mixture is compressed when the both the exhaust port and transfer ports are covered. The cycle is repeated.
Advantages: • It has no valves or camshaft mechanism, hence simplifying its mechanism and construction • For one complete revolution of the crankshaft, the engine executes one cycle—the 4-stroke executes one cycle per two crankshafts revolutions. • Less weight and easier to manufacture. • High power-to-weight ratio
Disadvantages: • The lack of lubrication system that protects the engine parts from wear. Accordingly, the 2-stroke engines have a shorter life. • 2-stroke engines do not consume fuel efficiently. • 2-stroke engines produce lots of pollution. • Sometimes part of the fuel leaks to the exhaust with the exhaust gases. In conclusion, based on the above advantages and disadvantages, two-stroke engines are supposed to operate in vehicles where the weight of the engine must be small, and it is not used continuously for long periods.
@@@@@@@@@